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ABSTRACT
Radar signal design in a spectrally crowded environment is a very challenging and topical problem due

to the increasing demand of both military surveillance/remote sensing capabilities and civilian wireless
services. This work deals with the synthesis of optimized radar waveforms ensuring spectral compatibility
with the overlayed licensed electromagnetic radiators. Cognition provided by a Radio Environmental Map
(REM) is exploited as the key to an intelligent dynamic spectrum allocation. In fact, the information
provided by the REM is exploited to force dynamic spectral constraints on the radar waveform which
is thus the result of a constrained optimization process aimed at improving some radar performances
(such as detection, sidelobes, resolution, tracking). A solution technique leading to an optimal waveform
is proposed. The procedure requires the relaxation of the original problem into a convex optimization
problem and involves a polynomial computational complexity.
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1. Introduction
Coexistence among radar and telecommunication systems is a crucial issue which has been attracting

the interest of many scientists and engineers during the last few years and is currently becoming one of the
challenging research topics in both radar and communication communities [1]. The even growing demand
of both high quality wireless services and accurate remote sensing capabilities is, in fact, increasing the
amount of required bandwidth [2], [3]. Furthermore, basic electromagnetic considerations, such as good
foliage penetration [4], and low path loss attenuation, push some communication and radar systems to
coexist in the same frequency band [5] (for instance VHF and UHF). As a result, the electromagnetic
spectrum is becoming more and more crowded. It is thus imperative the development of advanced radar
signals ensuring compatibility with the surrounding electromagnetic radiators, namely keeping acceptable
the mutual interference induced on frequency overlayed systems.

Many papers in open literature have considered the problem of designing radar waveforms with a
suitable frequency allocation [6], so as to control the interference brought on overlayed wireless networks
(communication and navigation systems), while enhancing radar performance requirements in terms of
range-Doppler resolution, low range and Doppler sidelobes, detection and tracking capabilities. In [7], a
waveform design technique is introduced to confer some desired spectral nulls to the radar signal. The
idea is to perturb a stepped frequency modulated pulse forcing an additional fast time polyphase code.
An alternate projection algorithm for the construction of chirp-like constant-modulus signals with a
single spectral null is proposed in [8], whereas in [9] its extension, addressing the production of multiple
notches, is established. Some iterative algorithms are introduced in [10] for the joint design of the transmit
signal and the receive filter achieving frequency stop-band suppression and range sidelobes minimization.
A genetic algorithm to design sparse waveforms for high frequency surface wave radar systems is
investigated in [11]. In [12], a fast coding technique based on alternate projections and successive fast
Fourier transforms is developed to obtain sparse waveforms with a controlled Peak Sidelobe Level (PSL).
In [13] and [14], sparse frequency constant modulus radar signals with a low Integrated Sidelobe Level
(ISL) are built optimizing a suitable combination between the ISL metric and a penalty function accounting
for the waveform frequency allocation. Finally, in [15], a spectrum-centric signal design is developed
based on the minimization of the transmitted energy on a set of disjoint stop-band frequencies under a
unimodularity constraint and AutoCorrelation Function (ACF) masking.

Herein, a cognitive procedure [16]–[18] is proposed to devise radar waveforms sharing desirable spectral
features which ensure coexistence with overlayed wireless networks, and optimizing radar detection
performance. It is supposed that the radar system has the ability to predict the behavior of surrounding
licensed radiators, for instance using a Radio Environmental Map (REM), [19], containing geographical
features, available wireless services and their spectral regulations, locations and activities of wireless
transmitters. This is the key to a cognitive adaptation since the aforementioned information enable an
intelligent spectrum utilization in a spectrally crowded environment. More in details, the proposed design
technique considers as figure of merit the Signal to Interference plus Noise Ratio (SINR) and optimizes
the transmitted radar waveform constraining the amount of interference energy on crowded/reserved
frequency bands. Other than an energy constraint, a similarity constraint is enforced on the transmitted
radar signal, so as to control some relevant characteristics of the waveform, such as range-Doppler
resolution, variations in the signal modulus, and PSL. The resulting problem can be formalized as a
non-convex optimization Quadratically Constrained Quadratic Programming (QCQP) problem. It is worth
pointing out that the similarity and the spectral compatibility constraints are generally competing, namely
it is not always ensured the existence of a radar code compliant with both of them. This motivates a
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study of the Interference/Similarity (I/S) achievable region, namely the set of the admissible interference
and similarity levels. Remarkably, it is shown the convexity of the aforementioned set, which leads to the
achievability of all the I/S levels contained in the convex hull of any I/S feasible pairs. With reference to
the solution technique adopted for the considered design problem, first of all it is relaxed into a convex
one which belongs to the SemiDefinite Programming (SDP) problem class. Then an optimum waveform
is constructed through a specific rank-one decomposition of [20] performed on an optimal solution to the
relaxed convex problem. Remarkably the entire procedure entails a polynomial computational complexity.
It is worth pointing out that, there is no algorithm available in the open literature, capable of optimizing
the SINR, while constraining and controlling, at the same time, both the produced interference power as
well as the shape of the transmitted waveform. Indeed, the available techniques only focus on the control
of the interference power and the shape of the signal, without accounting for the achieved SINR. On the
other hand, our algorithm can be used for improving, in the SINR sense, any waveform devised through
any other algorithm, while keeping under control the interference produced by the waveform, as well as
its shape.

2. System Model & Problem Formulation
Let c(t) be the baseband equivalent of the transmitted radar pulse, assumed to be composed of N

linearly modulated sub-pulses; the code element for the i-th sub-pulse is denoted c(i) and the vector
c = [c(1), . . . , c(N)]T ∈ CN represents the fast-time radar code. The waveform at the receiver end is
down-converted to baseband, undergoes a sub-pulse matched filtering operation, and then is sampled.

The N -dimensional column vector v = [v(1), . . . , v(N)]T ∈ CN of the fast time observations,
associated to the range-azimuth cell under test, can be expressed as:

v = αTc + n, (1)

with αT a complex parameter accounting for channel propagation and backscattering effects from the
target within the range-azimuth bin of interest, and n the N -dimensional column vector containing
the filtered disturbance echo samples. Specifically, the vector n accounts for both white internal thermal
noise and interfering signals due to unknown and unlicensed, possibly hostile jammers as well as licensed
overlayed telecommunication networks sharing the same frequencies as the radar of interest. Moreover,
n is modeled as a complex, zero-mean, circularly symmetric Gaussian random vector with covariance
matrix E[nn†] = M .

As to the licensed radiators coexisting with the radar of interest, we suppose that each of them is
working over a frequency band Ωk =

[
fk1 , f

k
2

]
, k = 1, . . . ,K, where fk1 and fk2 denote the lower and upper

normalized frequencies for the k-th system, respectively. To guarantee spectral compatibility with the
overlayed telecommunication services, the radar has to control the amount of interfering energy produced
on the shared frequency bands. From an analytical point of view, the amount of energy transmitted on
the k-th band can be computed as ∫ fk

2

fk
1

Sc (f) df = c†Rk
Ic, (2)

where

Sc (f) =

∣∣∣∣∣
N−1∑
n=0

c(n)e−j2πfn

∣∣∣∣∣
2
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is the Energy Spectral Density (ESD) of the fast-time code c and

Rk
I (m, l) =


fk2 − fk1 m = l

ej2πf
k
2 (m−l) − ej2πfk

1 (m−l)

j2π(m− l)
m 6= l

(m, l) ∈ {1, . . . , N}2. (3)

For K radiators, the total interfering energy transmitted on the coexisting systems is given by

K∑
k=1

c†Rk
Ic . (4)

Hence, denoting by EI the amount of allowed interference, to overlay the radar with coexisting telecom-
munication networks, the transmitted waveform has to comply with the constraint

c†RIc ≤ EI , (5)

where

RI =

K∑
k=1

wkR
k
I . (6)

It is worth pointing out that, by suitably choosing the coefficients wk ≥ 0, k = 1, . . . ,K, different
weights can be given to the coexisting wireless networks, for instance based on their distance from the
radar and their tactical importance (i.e. navigation systems, military communications, public services,
etc).

A. Cognitive Spectrum Awareness

To quantify and control the amount of interference induced on coexisting telecommunication networks,
radar requires the knowledge of the number K of coexisting licensed radiators, their bandwidth (referred to
as stop-band in the following and defined by the lower and upper normalized frequencies fk1 and fk2 ), and
the penalty weights wk’s to assign to each competing system (see equation (6)). It is thus of paramount
importance for the sensing radar to have an accurate, reliable, and comprehensive radio environment
awareness. Radio Environment Map (REM) [19] represents the key to gain the aforementioned spectrum
cognizance which is at the base of an intelligent and agile spectrum management. First introduced by the
Virginia Tech team [22] as the main foundation for a novel approach to Cognitive Radio (CR) networking,
REM can be considered as an abstraction of real-world radio scenarios, and can be considered as an
integrated database digitizing and indexing the available electromagnetic information.

Figure 1 illustrates some REM multi-domain knowledge sources represented by geographical features,
available services and spectral regulations, locations and activities of telecommunication networks, pre-
vious radio experiences and measurements [23]. Indeed, the idea behind REM is to store and process
a variety of data, so as to make possible the inference of a multitude of environmental characteristics,
such as locations of transmitters, prevailing propagation conditions, and estimates of spectrum usage
over time and space. Thus, REM offers a suitable vehicle of CR system support, which can be exploited
by cognitive engines for most cognitive functionalities, such as situation awareness, learning, reasoning,
planning, and decision support.

Transmit Adaptivity for Cognitive Radar 

3 - 4 STO-EN-SET-216 



Figure 1: A pictorial representation of the REM and its usage in a cognitive radar.

To populate and update the REM, both a-priori knowledge as well as spectral sensing techniques (like
feature-based signal detectors) can be used [23]. Furthermore, as depicted in the Figure 1, a dedicated
sensor network could be also employed to improve the quality of the scenario monitoring. Obviously,
the better the characterization and modeling of the radio environment, the more the system can benefit
by a-priori information and past experiences and adapt to the operational environment. Therefore, the
capability and the level of situation awareness may greatly impact the performance achieved by the CR
system.

3. Code Design
In this section, we propose a waveform design technique which attempts to maximizing the detection

probability and at the same time provides a control both on the interfering energy produced in the stop-
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bands and on desirable features of the transmitted waveform. Precisely, we consider as figure of merit
the SINR, defined as

SINR = |αT |2c†Rc , (7)

where R = M−1. Furthermore, to ensure coexistence among the radar and wireless telecommunication
infrastructures sharing the same spectrum, we enforce the transmitted waveform to be compliant with the
constraint (5). Finally, we impose an energy constraint c†c = 1 as well as a similarity constraint [24]
between the sought radar code and a unit energy reference code c0 (‖c0‖2 = 1)

‖c− c0‖2 ≤ ε , (8)

where the parameter ε ≥ 0 rules the size of the similarity region. It is worth pointing out that designing
a code which optimizes the detection performance does not provide any kind of control on the shape
of the resulting coded waveform. Otherwise stated, an unconstrained optimization can lead to signals
with significant modulus variations, poor range resolution, high PSLs, and more in general an undesired
ambiguity function behavior. Forcing (8), when c0 shares constant modulus, reasonable range resolution
and PSL, allows to indirectly control desirable features of the radar waveform. The smaller ε, the higher
the degree of similarity between the designed radar code and c0.

Based on the aforementioned guidelines, the waveform design problem can be formulated as a non-
convex QCQP optimization problem

P1


maxc c†Rc
s.t. c†c = 1

c†RIc ≤ EI
‖c− c0‖2 ≤ ε

,

which can be equivalently written as

P2


maxc c†Rc
s.t. c†c = 1

c†RIc ≤ EI
Re
(
c†c0

)
≥ 1− ε/2

. (9)

Notice that previously proposed code design procedures [7], [9], [13], [15], can be applied for the
construction of a high quality reference code, namely a code exhibiting desired spectral properties as
well as radar features. By doing so, moving in a suitable Euclidean ball centered in the aforementioned
code we can improve the radar performance still keeping spectral coexistence.

The feasibility of problem P1, which not only depends on the parameters EI and ε but also on the
pre-fixed code c0, is discussed in the next subsection, whereas the technique adopted to solve problem
P2 is presented in subsection 3-A.

A. Solution to the Optimization Problem

In this subsection, we show how an optimal solution to the non-convex optimization problem P2 can
be computed in polynomial time. First of all, let us observe that an optimal solution to P2 can be obtained
from an optimal solution to the following Enlarged Quadratic Problem (EQP):

P3


maxc c†Rc
s.t. c†c = 1

c†RIc ≤ EI
Re2

(
c†c0

)
+ Im2

(
c†c0

)
= c†c0c0

†c ≥ δε

(10)

Transmit Adaptivity for Cognitive Radar 

3 - 6 STO-EN-SET-216 



where δε = (1− ε/2)2. In fact, since the feasible region of P3 is larger than that of P2, every optimal
solution of P3, which is feasible for P2, is also an optimal solution for P2 [25]. Thus, assume that c̄ is an
optimal solution to P3 and let φ = arg (c̄†c0). It is easily seen that c̄ejφ is still an optimal solution to P3.
Now, observing that (c̄ejφ)†c0 = |c̄†c0|, c̄ejφ is a feasible solution to P2. In other words, c̄ej arg (c̄†c0)

is optimal for both P2 and P3.
Now, we have to find an optimal solution to P3 and, to this end, we exploit the equivalent matrix

formulation

P3


maxC tr (CR)
s.t. tr (C) = 1

tr (CRI) ≤ EI
tr (CC0) ≥ δε
C = cc†

(11)

where C0 = c0c0
†. All the non-convexity of problem P3 is now confined in the rank-one constraint

C = cc†.
Problem (11) can be relaxed into a convex SDP optimization problem, neglecting the rank-one constraint

[26]. By doing so, we obtain an Enlarged Quadratic Problem Relaxed (EQPR)

P4


maxC tr (CR)
s.t. tr (C) = 1

tr (CRI) ≤ EI
tr (CC0) ≥ δε
C � 0

. (12)

Let us now observe that problem P4 is solvable; in fact, the feasible constraints set is a compact set
(closed and bounded) and the objective function of P4 is continuous; furthermore, assuming that problem
P1 is strictly feasible, problem P4 is strictly feasible. This property can be of paramount importance from
a numerical point of view, since it guarantees that at any optimal point the complementary conditions
are satisfied [27] and interior point methods [25] can be used.

In order to prove the hidden convexity of problem P3, namely that the relaxation of P3 into P4 is tight,
we construct a rank-one optimal solution c̄c̄† to P4, starting from an arbitrary rank optimal solution C̄
to problem P4. To this end, we resort to the rank-one matrix decomposition theorem [20, Theorem 2.3],
which is cited as the following lemma 1.

Lemma 3.1: Let X be a non-zero N × N (N ≥ 3) complex Hermitian positive semidefinite ma-
trix and {A1,A2,A3,A4} be Hermitian matrices, and suppose that (tr (Y A1) , tr (Y A2) , tr (Y A3),
tr (Y A4)) 6= (0, 0, 0, 0) for any non-zero complex Hermitian positive semidefinite matrix Y of size
N ×N . Then,

• if rank (X) ≥ 3, one can find, in polynomial time, a rank-one matrix xx† such that x (synthetically
denoted as x = D1(X,A1,A2,A3,A4)) is in range (X), and

x†Aix = tr (XAi) , i = 1, 2, 3, 4;

1Function D1 and D2 are useful to schematize the mapping (formally defined and proved in [20, Theorem 2.3]) between an
arbitrary rank matrix X and a rank one matrix xx†, satisfying tr (XAi) = tr (xx†Ai), i = 1, 2, 3, 4. As to the MATLAB
codes implementing the functions D1 and D2, please see http://www.math.hkbu.edu.hk/∼huang/index-2.htm.
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• if rank (X) = 2, for any z not in the range space of X , one can find a rank-one matrix xx† such
that x (synthetically denoted as x = D2(X,A1,A2,A3,A4)) is in the linear subspace spanned
by {z} ∪ range (X), and

x†Aix = tr (XAi) , i = 1, 2, 3, 4.

Let us check the applicability of Lemma 3.1 to both C̄ and the matrix parameters of P4. Indeed, the
condition N ≥ 3 is mild and practical (the number of transmitted pulses is usually greater than or equal
to 3). Now, in order to verify

(tr (Y R) , tr (Y I) , tr (Y RI) , tr (Y C0)) 6= (0, 0, 0, 0), for any non-zero Y � 0,

it suffices to prove that there is (a1, a2, a3, a4) ∈ R4 such that

a1R + a2I + a3RI + a4C0 � 0.

But this is evident for the matrix parameters of P4. As a consequence, after constructing a rank-one
optimal solution c̄c̄† to P4, an optimal solution to P1 is given by c? = c̄ej arg(c̄†c0). Algorithm 1
summarizes the procedure leading to an optimal solution to P1.

Algorithm 1 : Algorithm for Cognitive Radar Code Optimization

Input: c0, R, RI , EI , δε.
Output: An optimal solution c? to P1.

1: solve SDP P4 finding an optimal solution C̄ and the optimal value v?;
2: if rank (C̄) = 1 then
3: set c̄ = λmax(C̄)v, with v being an eigenvector associated to the maximum eigenvalue of C̄;
4: else if rank (C̄) = 2 then
5: find c̄ = D2

(
C̄,R, I,RI ,C0

)
;

6: else
7: find c̄ = D1

(
C̄,R, I,RI ,C0

)
;

8: end
9: output c? = c̄ej arg(c̄†c0).

The computational complexity connected with the implementation of the algorithm is polynomial as
both the SDP problem and the decomposition of Lemma 3.1 can be performed in polynomial time.

4. Performance Analysis
In this section, we assess the performance of the proposed waveform design technique in terms

of achievable SINR value, spectral shape, and autocorrelation features. Specifically, we study the I/S
achievable region of problem P1 for a fixed interfering scenario, and analyze the behavior of the waveforms
devised according to Algorithm 1.

We consider a radar whose baseband equivalent transmitted signal has a two-sided bandwidth of 810
kHz and it is sampled at fs = 810 kHz. As to the interference, we suppose that it is composed of unli-
censed narrowband continuous jammers, white interference, and licensed coexisting telecommunication

Transmit Adaptivity for Cognitive Radar 

3 - 8 STO-EN-SET-216 



networks spectrally overlayed to the radar of interest. Specifically, we model the disturbance covariance
matrix as:

M = σ0I +

K∑
k=1

σI,k
∆fk

Rk
I +

KJ∑
k=1

σJ,kRJ,k, (13)

where
• σ0 = 0 dB is the thermal noise level;
• K = 7 is the number of licensed radiators;
• σI,k accounts for the energy of the k-th coexisting telecommunication network operating on the

normalized frequency band [fk2 , f
k
1 ] (σI,k = 10 dB, k = 1, . . . ,K);

• ∆fk = fk2 − fk1 is the bandwidth associated with the k-th licensed radiator, for k = 1, . . . ,K;
• KJ = 2 is the number of active and unlicensed narrowband jammers;
• σJ,k, k = 1, . . . ,KJ , accounts for the energy of the k-th active jammer (σJ,1 dB = 50 dB, σJ,2 dB =

40 dB);
• RJ,k, k = 1, . . . ,KJ , is the normalized disturbance covariance matrix of the k-th active unlicensed

jammer, defined as
RJ,k = rJ,kr

†
J,k ,

with rJ,k(n) = ej2πfJ,kn/fs , where fJ,k denotes the Doppler shift of the k-th jammer (fJ,1/fs = 0.7,
and fJ,2/fs = 0.75).

As to the overlayed and foreseen telecommunication systems, which spectrally coexist with the radar
of interest, we consider the following baseband equivalent radar stop-bands [28]:

Ω1 = [0.0000, 0.0617] , Ω2 = [0.0988, 0.2469] , Ω3 = [0.2593, 0.2840] ,
Ω4 = [0.3086, 0.3827] , Ω5 = [0.4074, 0.4938] , Ω6 = [0.5185, 0.5556] ,
Ω7 = [0.9383, 1.0000] .

(14)

Furthermore, we suppose licensed/foreseen overlayed systems with the same relevance, namely wk = 1
for k = 1, . . . , 7. Based on the assumed stop-bands (14) and weights wk’s, we can compute the matrix
RI , defined in (6), and enforce the interference energy constraint on the transmitted radar waveform.
Notice that, the matrix RI does not depend on the frequencies of the unlicensed jammers and is only
function of the spectral bands (14) and weights associated to the licensed radiators.

As to the reference waveform c0, we model it as a unitary norm Linear Frequency Modulated (LFM)
pulse with a duration of 200 µsec and a chirp rate Ks = (750× 103)/(200× 10−6) Hz/sec; it results in
N = 162 samples due to the considered sampling frequency.

Finally, for comparison purpose, with reference to the example of Figures 3, we consider the transmit
sequence c̃0 and the receive filter g̃0 devised through the procedure in [10]. Specifically, with reference
to the soft-power constraint transmit waveform design technique [10], we assume, as starting sequence,
the code c0, and fix δ = 0.9, λT = 10−5, and R(2) = RI , whereas, with reference to the receive filter
design technique, we fix β = 0.05, λT = 10−5, ∆n = 10, and assume R(2) = M (more details about
the Lindenfeld’s algorithms, the aforementioned parameters, and their setting, can be found in [10]).

The I/S achievable region for the considered scenario is represented in Figure 2. Notice that the radar
designer can choose the pair (EI , ε), referred to in the sequel as operative point, to suitably trade off
spectral coexistence, desirable radar waveform characteristics and achievable SINR of the system. For
instance, with reference to Figure 2, considering (EI , ε) equal to the point A, the frequency coexistence
of the radar with the overlayed telecommunication networks is emphasized, with respect to choosing
(EI , ε) equal to the point B. In the last case, other radar features, such as high range-Doppler resolution
and/or low sidelobe levels, are privileged.
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Figure 2: I/S achievable region, for chirp similarity code with an interference environment modeled as
K = 7 equivalent stop-bands.

A. Behavior of the Devised Waveforms

In Figures 3, we provide the ESD, the squared modulus of the ACF, and the normalized SINR of
the waveforms devised for three operative points (red dot, black star, and cyan hexagram in Figure 2).
Specifically, we consider the points (ÊI , εn), n = 1, 2, 3, with ÊI = 0.066, ε1 = 0.264, ε1 = 0.444,
ε1 = 0.654 (notice that (ÊI , ε1) corresponds to the point A in Figure 2), and compare the results
with those achievable by the couple signal/receiver (c̃0, g̃0). In Figure 3(a), we plot the ESD of the
synthesized signals versus the normalized frequency, together with that of the reference code. The stop-
bands correspond to the ON-level of the red line, while the OFF-levels denote the frequencies where no
foreseen system is transmitting. The curves highlight the capability of the proposed technique to suitably
control the amount of energy produced over the shared frequency bands. In fact, for each ε, the energy
transmitted in the stop-bands is lower than the allowed level, thus ensuring the coexistence with other
transmitting systems.

However, we observe that, given the considered setting for the design parameters, the transmit signal
c̃0 is capable of ensuring an even greater suppression of the interference at the stop-bands than the
devised codes c. Nevertheless, this behavior is quite expected as the signal design technique of [10] only
focuses on the coexistence problem. In other words, the figure of merit is represented by the interference
reduction, and no additional constraints are forced neither on the shape of the sought waveform (whose
auto-ambiguity properties are unpredictable) nor on the SINR at the receiver side. On the contrary, the
aim of the proposed algorithm is to maximize the attainable SINR, offering at the same time a control
over the total amount of interference produced at certain frequencies, as well as on the resulting signal
shape.
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(c)Figure 3: a) ESD; b) Squared modulus of the ACF. red dash-dotted lines: stop-bands; green curve:
reference code c0; blue curve: Algorithm 1, EI = 0.066, ε = 0.264; magenta curve: Algorithm 1,
EI = 0.066, ε = 0.444; black curve: Algorithm 1, EI = 0.066, ε = 0.654; cyan curve: Algorithm [10]
c) blue curve: Algorithm 1, Normalized SINR vs ε, EI = 0.066; cyan curve: c̃0, Algorithm [10].
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Additionally, we notice that increasing the similarity parameter ε, namely increasing the available
degrees of freedom, smarter and smarter distributions of the useful energy are achieved. Otherwise stated,
Algorithm 1 allows the designer to exactly choose the amount of energy suppression to force over the
stop-bands, which is instead not possible with reference to the procedure of [10]. We also observe a
progressive reduction of the radar emission in correspondence of the shared frequencies, as well as an
enhancement of the unlicensed jammer rejection capabilities. As a result, higher and higher SINR values
can be achieved.

This is actually shown in Figure 3(c), where the normalized SINR is represented versus ε, assuming
EI = 0.066; namely, we consider, as figure of merit, SINRn, which is defined as:

SINRn =
SINR
|αT |2

=


c? †Rc? , for Algorithm 1

|g̃0
†c̃0|2

g̃0
†Mg̃0

, for [10]
.

As expected, a proper choice of the design parameters will allow us to achieve good interference rejection
properties as well as higher SINR values.

Notice that, starting from ε = 0.72, with reference to our procedure, the maximum normalized SINR
of the system is achieved. In fact,

max
c

c†M−1c =
1

λmin(M)
≤ 1 ;

namely, SINRn [dB] is upper-bounded by 0 dB.
In Figure 3(b), we provide a performance analysis in terms of autocorrelation properties of the designed

waveforms. Evidently, better SINR values, spectral compatibility, and interference rejection are swapped
for worse and worse range resolutions and/or ISLs/PSLs. It can be also observed that, as the auto-
ambiguity properties of the transmit waveform of [10] are not directly under control, higher ISLs/PSLs
values and, more in general, worse range-sidelobe profiles than the proposed approach can be experienced.
Nevertheless, the smoother behavior of our signals agrees with our design criterion, since the optimization
problem itself involves a compromise between the desire of lowering the transmitted energy in the stop-
bands as well as in correspondence of the jammer central frequencies, and the need of keeping under
control the ambiguity features of the sought signals.

In Figures 4, we analyze the ESD, the squared modulus of the ACF, and the normalized SINR of the
waveforms devised for other three operative points (red dot, blue diamond, and green square of Figure
2). Specifically, we consider (EI,n, ε̂), n = 1, 2, 3, with EI,1 = 0.066, EI,2 = 0.216, EI,3 = 0.426, and
ε̂ = 0.264. In Figure 4(a), we plot the ESD of the waveforms corresponding the three aforementioned
points, together with the interference mask and the ESD of the reference code (notice that the curves
for EI,2 and EI,3 actually overlap). As in the situation displayed in Figure 3(a), through Algorithm
1, the radar system has the ability to properly control the energy transmitted in the shared bandwidths,
with a reduction of the ESD level, with respect to c0, up to 10 dB. Notice also that, when the allowed
interference level EI increases, more energy is transmitted in the stop-bands. However, since relaxing
the energy constraint is tantamount to enlarging the feasible set, more degrees of freedom are available
in this optimization process. They lead to smarter and smarter distributions of the useful energy at the
unlicensed jammers frequencies: namely, we experience an enhancement in terms of unlicensed jammer
rejection capabilities of the system which is a key ingredient to achieve better SINR values. This effect is
shown in Figure 4(c), where the normalized SINR is plotted versus EI , assuming ε = 0.264. Evidently,
as compared with the results reported in Figure 3(c), the maximum achieved normalized SINR is inferior.
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Figure 4: a) ESD; b) squared modulus of the ACF. red dash-dotted lines: stop-bands; green curve:
reference code c0; blue curve: Algorithm 1, EI = 0.066, ε = 0.264; magenta curve: Algorithm 1,
EI = 0.216, ε = 0.264; black curve: Algorithm 1, EI = 0.426, ε = 0.264 (notice that the magenta and
the black curves partially overlap). c) Normalized SINR vs EI , ε = 0.264.

Transmit Adaptivity for Cognitive Radar 

STO-EN-SET-216 3 - 13 



This can be justified observing that the disturbance suppression is less effective than that shown in Figure
3(a), due to the tighter similarity constraint.

Finally, in Figure 4(b) we report the squared moduli of the corresponding autocorrelations. Again, we
can notice a trade-off, among the radar performance measures (namely, spectral coexistence capability,
SINR, and ambiguity features), similar to that displayed in Figures 3.
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